Bone marrow stromal cells stimulate an angiogenic program that requires endothelial MT1-MMP.

نویسندگان

  • Suraj Kachgal
  • Bita Carrion
  • Isaac A Janson
  • Andrew J Putnam
چکیده

Bone marrow-derived stromal/stem cells (BMSCs) have recently been characterized as mediators of tissue regeneration after injury. In addition to preventing fibrosis at the wound site, BMSCs elicit an angiogenic response within the fibrin matrix. The mechanistic interactions between BMSCs and invading endothelial cells (ECs) during this process are not fully understood. Using a three-dimensional, fibrin-based angiogenesis model, we sought to investigate the proteolytic mechanisms by which BMSCs promote vessel morphogenesis. We find that BMSC-mediated vessel formation depends on the proteolytic ability of membrane type 1-matrix metalloproteinase (MT1-MMP). Knockdown of the protease results in a small network of vessels with enlarged lumens. Contrastingly, vessel morphogenesis is unaffected by the knockdown of MMP-2 and MMP-9. Furthermore, we find that BMSC-mediated vessel morphogenesis in vivo follows mechanisms similar to what we observe in vitro. Subcutaneous, cellular fibrin implants in C.B-17/SCID mice form aberrant vasculature when MMPs are inhibited with a broad-spectrum chemical inhibitor, and a very minimal amount of vessels when MT1-MMP proteolytic activity is interrupted in ECs. Other studies have debated the necessity of MT1-MMP in the context of vessel invasion in fibrin, but this study clearly demonstrates its requirement in BMSC-mediated angiogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pericellular proteases in angiogenesis and vasculogenesis.

Pericellular proteases play an important role in angiogenesis and vasculogenesis. They comprise (membrane-type) matrix metalloproteinases [(MT-)MMPs], serine proteases, cysteine cathepsins, and membrane-bound aminopeptidases. Specific inhibitors regulate them. Major roles in initiating angiogenesis have been attributed to MT1-matrix metalloproteinase (MMP), MMP-2, and MMP-9. Whereas MT-MMPs are...

متن کامل

ATVB in focus: novel mediators and mechanisms in angiogenesis and vasculogenesis.

Pericellular proteases play an important role in angiogenesis and vasculogenesis. They comprise (membranetype) matrix metalloproteinases [(MT-)MMPs], serine proteases, cysteine cathepsins, and membrane-bound aminopeptidases. Specific inhibitors regulate them. Major roles in initiating angiogenesis have been attributed to MT1-matrix metalloproteinase (MMP), MMP-2, and MMP-9. Whereas MT-MMPs are ...

متن کامل

MT1-MMP Inhibits the Activity of Bst-2 via Their Cytoplasmic Domains Dependent Interaction

Bst-2 (bone marrow stromal cell antigen 2) is a type II membrane protein, and it acts as a tetherin to inhibit virion releasing from infectious cells. Membrane type-1 matrix metalloproteinase (MT1-MMP) is a protease. It plays a pivotal role in cellular growth and migration by activating proMMP-2 into active MMP2. Our results here elaborate that MT1-MMP inhibits the tetherin activity of Bst-2 by...

متن کامل

MT1-MMP down-regulates the glucose 6-phosphate transporter expression in marrow stromal cells: a molecular link between pro-MMP-2 activation, chemotaxis, and cell survival.

Bone marrow-derived stromal cells (BMSC) are avidly recruited by experimental vascularizing tumors, which implies that they must respond to tumor-derived growth factor cues. In fact, BMSC chemotaxis and cell survival are regulated, in part, by the membrane type-1 matrix metalloproteinase (MT1-MMP), an MMP also involved in pro-MMP-2 activation and in degradation of the extracellular matrix (ECM)...

متن کامل

MT1-MMP cleaves Dll1 to negatively regulate Notch signalling to maintain normal B-cell development.

Notch signalling controls the differentiation of haematopoietic progenitor cells (HPCs). Here, we show that loss of membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP14), a cell surface protease expressed in bone marrow stromal cells (BMSCs), increases Notch signalling in HPCs and specifically impairs B-lymphocyte development. When co-cultured with BMSCs in vitro, HPCs differentiation towar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cellular physiology

دوره 227 11  شماره 

صفحات  -

تاریخ انتشار 2012